Android View的绘制流程三部曲
View的绘制流程从ViewRootImpl的performTraversals方法开始,在performTraversals方法中会调用performMeasure、performLayout、performDraw三个方法来遍历完成整棵视图树的绘制
measure过程
MeasureSpec
performMeasure方法是这样被调用的:
performMeasure(childWidthMeasureSpec, childHeightMeasureSpec);
接收了两个参数,很好奇这两个参数是什么。看名字是“子View宽测量说明书”和“子View高测量说明书”?应该先来了解一下MeasureSpec。
MeasureSpec是一个32位的int值,高2位是specMode记录的是测量模式,低30位是specSize记录的是测量大小。
specMode有三种类型:
EXACTLY : 精确值模式,表示父视图希望子视图的大小应该是由specSize的值来决定的,这个时候View的最终大小就是specSize所记录的大小。对应于LayoutParams中的 match_parent和具体数值这两种模式。比如 android:layout_width=”match_parent”,android:layout_width=”50dp”
AT_MOST : 最大值模式,表示父容器指定了一个可用大小specSize,子视图最多只能是specSize中指定的大小,不能大于这个值。对应于LayoutParams中的 wrap_content的形式。
UNSPECIFIED :父容器不对View有任何限制,View想多大就多大,一般不会用到
MeasureSpec到底是用来干嘛的?
系统是通过View的MeasureSpec来确定View的测量宽高的
MeasureSpec是怎么来的?
对于普通的View来说,其MeasureSpec由父容器的MeasureSpec和自身的LayoutParams共同确定。对于顶级View(DecorView),其MeasureSpec由窗口的尺寸和其自身的LayoutParams共同确定。
我们回到performMeasure方法,来看看传入的参数childWidthMeasureSpec和childHeightMeasureSpec,这两个MeasureSpec是顶级View的,它们由窗口的尺寸和其自身的LayoutParams共同确定。那它们又是怎么产生的?在ViewRootImpl的measureHierarchy方法中,有两行代码是这样的:
childWidthMeasureSpec = getRootMeasureSpec(desiredWindowWidth, lp.width); childHeightMeasureSpec = getRootMeasureSpec(desiredWindowHeight, lp.height);
getRootMeasureSpec方法获取到根View(DecorView)的MeasureSpec。传入的参数desiredWindowWidth和desiredWindowHeight是屏幕的尺寸。lp.width 和lp.height都是MATCH_PARENT。
那么探探getRootMeasureSpec方法,如下:
private static int getRootMeasureSpec(int windowSize, int rootDimension) { int measureSpec; switch (rootDimension) { case ViewGroup.LayoutParams.MATCH_PARENT: // Window can't resize. Force root view to be windowSize. measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.EXACTLY); break; case ViewGroup.LayoutParams.WRAP_CONTENT: // Window can resize. Set max size for root view. measureSpec = MeasureSpec.makeMeasureSpec(windowSize, MeasureSpec.AT_MOST); break; default: // Window wants to be an exact size. Force root view to be that size. measureSpec = MeasureSpec.makeMeasureSpec(rootDimension, MeasureSpec.EXACTLY); break; } return measureSpec; }
会转到MeasureSpec的makeMeasureSpec方法,而makeMeasureSpec方法就是将SpecSize和SpecMode包装成32位的int值。
那makeMeasureSpec方法是怎么组装MeasureSpec的呢?如下:
public static int makeMeasureSpec(@IntRange(from = 0, to = (1 << MeasureSpec.MODE_SHIFT) - 1) int size,@MeasureSpecMode int mode) { if (sUseBrokenMakeMeasureSpec) { return size + mode; } else { return (size & ~MODE_MASK) | (mode & MODE_MASK); } }
这时,根View的MeasureSpec就诞生了。它将参与构成子元素的MeasureSpec。
而对于普通的View,其MeasureSpec由父容器的MeasureSpec和自身的LayoutParams共同构成。我们知道刚才getRootMeasureSpec方法获取到的是顶级View的MeasureSpec,顶级View本身就是父容器。
那现在看看ViewGroup的measureChildWithMargins方法,这个方法是用来测量子View的。如下:
protected void measureChildWithMargins(View child, int parentWidthMeasureSpec, int widthUsed, int parentHeightMeasureSpec, int heightUsed) { final MarginLayoutParams lp = (MarginLayoutParams) child.getLayoutParams(); final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec, mPaddingLeft + mPaddingRight + lp.leftMargin + lp.rightMargin + widthUsed, lp.width); final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec, mPaddingTop + mPaddingBottom + lp.topMargin + lp.bottomMargin + heightUsed, lp.height); child.measure(childWidthMeasureSpec, childHeightMeasureSpec); }
首先是调用子元素的getLayoutParams方法获取到子元素的LayoutParams,之后调用了getChildMeasureSpec方法来获取到子元素的MeasureSpec,可以看到传入了父元素的MeasureSpec。
getChildMeasureSpec方法很重要,能让我们了解子元素MeasureSpec的产生过程,如下:
public static int getChildMeasureSpec(int spec, int padding, int childDimension) { int specMode = MeasureSpec.getMode(spec); int specSize = MeasureSpec.getSize(spec); int size = Math.max(0, specSize - padding); int resultSize = 0; int resultMode = 0; switch (specMode) { // Parent has imposed an exact size on us case MeasureSpec.EXACTLY: if (childDimension >= 0) { resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size. So be it. resultSize = size; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size. It can't be // bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } break; // Parent has imposed a maximum size on us case MeasureSpec.AT_MOST: if (childDimension >= 0) { // Child wants a specific size... so be it resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size, but our size is not fixed. // Constrain child to not be bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size. It can't be // bigger than us. resultSize = size; resultMode = MeasureSpec.AT_MOST; } break; // Parent asked to see how big we want to be case MeasureSpec.UNSPECIFIED: if (childDimension >= 0) { // Child wants a specific size... let him have it resultSize = childDimension; resultMode = MeasureSpec.EXACTLY; } else if (childDimension == LayoutParams.MATCH_PARENT) { // Child wants to be our size... find out how big it should // be resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size; resultMode = MeasureSpec.UNSPECIFIED; } else if (childDimension == LayoutParams.WRAP_CONTENT) { // Child wants to determine its own size.... find out how // big it should be resultSize = View.sUseZeroUnspecifiedMeasureSpec ? 0 : size; resultMode = MeasureSpec.UNSPECIFIED; } break; } //noinspection ResourceType return MeasureSpec.makeMeasureSpec(resultSize, resultMode); }
经过了getChildMeasureSpec方法,子元素的MeasureSpec也诞生了。这个方法代码虽然长长的,但逻辑并不复杂,就是根据父容器的MeasureSpec和子元素的LayoutParams来组装子元素的MeasureSpec。所以说普通View的MeasureSpec由父容器的MeasureSpec和自身的LayoutParams共同决定。
那么现在已经搞定了MeasureSpec,跟进performMeasure方法看看到底View的测量过程是怎样的。
View的测量
performMeasure方法源码如下:
private void performMeasure(int childWidthMeasureSpec, int childHeightMeasureSpec) { Trace.traceBegin(Trace.TRACE_TAG_VIEW, "measure"); try { mView.measure(childWidthMeasureSpec, childHeightMeasureSpec); } finally { Trace.traceEnd(Trace.TRACE_TAG_VIEW); } }
转到了View的measure方法,如下:
public final void measure(int widthMeasureSpec, int heightMeasureSpec) { //代码省略 final boolean forceLayout = (mPrivateFlags & PFLAG_FORCE_LAYOUT) == PFLAG_FORCE_LAYOUT; //代码省略 if (forceLayout || needsLayout) { // first clears the measured dimension flag mPrivateFlags &= ~PFLAG_MEASURED_DIMENSION_SET; resolveRtlPropertiesIfNeeded(); int cacheIndex = forceLayout ? -1 : mMeasureCache.indexOfKey(key); if (cacheIndex < 0 || sIgnoreMeasureCache) { // measure ourselves, this should set the measured dimension flag back onMeasure(widthMeasureSpec, heightMeasureSpec); mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT; } //代码省略 mOldWidthMeasureSpec = widthMeasureSpec; mOldHeightMeasureSpec = heightMeasureSpec; mMeasureCache.put(key, ((long) mMeasuredWidth) << 32 | (long) mMeasuredHeight & 0xffffffffL); // suppress sign extension } }
可以看到View的measure方法是带final的,不允许子类重写。经过一系列的处理,会转到onMeasure方法,那就跟进View的onMeasure方法探探:
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) { setMeasuredDimension(getDefaultSize(getSuggestedMinimumWidth(), widthMeasureSpec), getDefaultSize(getSuggestedMinimumHeight(), heightMeasureSpec)); }
调用了setMeasuredDimension将测量的宽高设置进去,好像很简单的说。getDefaultSize方法用于获取测量宽高,源码如下:
public static int getDefaultSize(int size, int measureSpec) { int result = size; int specMode = MeasureSpec.getMode(measureSpec); int specSize = MeasureSpec.getSize(measureSpec); switch (specMode) { case MeasureSpec.UNSPECIFIED: result = size; break; case MeasureSpec.AT_MOST: case MeasureSpec.EXACTLY: result = specSize; break; } return result; }
其实内部逻辑是很简单的,从measureSpec中取出specMode和specSize,然后就是AT_MOST和EXACTLY的情况下,都返回specSize,这个specSize就是测量的值了。
以上就是View的测量过程。
补充:对于TextView、Button、ImageView等,它们都是重写了onMeasure方法的,可以阅读一下它们的onMeasure方法源码
ViewGroup的测量
那么接下来是ViewGroup的测量过程,ViewGroup中是没有重写onMeasure方法的,为什么ViewGroup不像View一样对其onMeasure方法做统一的实现呢?
我们可以想一下的,怎么能定义出一个符合多种ViewGroup的onMeasure方法呢?很显然LinearLayout和RelativeLayout的onMeasure方法实现是不一样的。所以需要由子类去实现,这也是很合理的。
ViewGroup除了完成自身的测量,还会遍历子元素,如此循环完成整棵视图树的测量过程。在ViewGroup中定义了一个measureChildren方法去遍历子元素,如下:
protected void measureChildren(int widthMeasureSpec, int heightMeasureSpec) { final int size = mChildrenCount; final View[] children = mChildren; for (int i = 0; i < size; ++i) { final View child = children[i]; if ((child.mViewFlags & VISIBILITY_MASK) != GONE) { measureChild(child, widthMeasureSpec, heightMeasureSpec); } } }
会转到measureChild方法中去测量子元素。
protected void measureChild(View child, int parentWidthMeasureSpec, int parentHeightMeasureSpec) { final LayoutParams lp = child.getLayoutParams(); final int childWidthMeasureSpec = getChildMeasureSpec(parentWidthMeasureSpec, mPaddingLeft + mPaddingRight, lp.width); final int childHeightMeasureSpec = getChildMeasureSpec(parentHeightMeasureSpec, mPaddingTop + mPaddingBottom, lp.height); child.measure(childWidthMeasureSpec, childHeightMeasureSpec); }
就这样,ViewGroup将measure过程传递到了子元素。如此反复完成整棵视图树的绘制。
以上就是ViewGroup的测量过程,至此,View的测量过程已经分析结束。当measure过程完成后,就可以调用getMeasuredWidth/getMeasuredHeight方法来获取测量宽高了。理解ViewGroup的测量,可以阅读下LinearLayout的onMeasure方法源码。
layout过程
在performLayout方法中转到layout方法来完成View布局过程。那就来看看View的layout方法,如下:
public void layout(int l, int t, int r, int b) { if ((mPrivateFlags3 & PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT) != 0) { onMeasure(mOldWidthMeasureSpec, mOldHeightMeasureSpec); mPrivateFlags3 &= ~PFLAG3_MEASURE_NEEDED_BEFORE_LAYOUT; } int oldL = mLeft; int oldT = mTop; int oldB = mBottom; int oldR = mRight; boolean changed = isLayoutModeOptical(mParent) ? setOpticalFrame(l, t, r, b) : setFrame(l, t, r, b); if (changed || (mPrivateFlags & PFLAG_LAYOUT_REQUIRED) == PFLAG_LAYOUT_REQUIRED) { onLayout(changed, l, t, r, b); mPrivateFlags &= ~PFLAG_LAYOUT_REQUIRED; ListenerInfo li = mListenerInfo; if (li != null && li.mOnLayoutChangeListeners != null) { ArrayList<OnLayoutChangeListener> listenersCopy = (ArrayList<OnLayoutChangeListener>)li.mOnLayoutChangeListeners.clone(); int numListeners = listenersCopy.size(); for (int i = 0; i < numListeners; ++i) { listenersCopy.get(i).onLayoutChange(this, l, t, r, b, oldL, oldT, oldR, oldB); } } } mPrivateFlags &= ~PFLAG_FORCE_LAYOUT; mPrivateFlags3 |= PFLAG3_IS_LAID_OUT; }
首先会调用setFrame将 l, t, r, b 四个参数传入,确定View的四个顶点的位置。setFrame方法如下:
protected boolean setFrame(int left, int top, int right, int bottom) { boolean changed = false; //代码省略 if (mLeft != left || mRight != right || mTop != top || mBottom != bottom) { changed = true; // Remember our drawn bit int drawn = mPrivateFlags & PFLAG_DRAWN; int oldWidth = mRight - mLeft; int oldHeight = mBottom - mTop; int newWidth = right - left; int newHeight = bottom - top; boolean sizeChanged = (newWidth != oldWidth) || (newHeight != oldHeight); // Invalidate our old position invalidate(sizeChanged); mLeft = left; mTop = top; mRight = right; mBottom = bottom; mRenderNode.setLeftTopRightBottom(mLeft, mTop, mRight, mBottom); //代码省略 return changed; }
可以看到,其实就是初始化了mLeft、mTop、mRight、mBottom。经过了setFrame方法后,View在父容器中的位置也就确定了。
眼尖的你发现了layout方法中,调用了 onLayout方法,这个onLayout方法是父容器用来确定子元素的位置的。你也应该猜到了onLayout方法内又会遍历子元素,然后调用子元素的layout来确定子元素在父容器中的位置。
那我们跟进去onLayout方法看看:
咦?竟然是空的。其实onLayout方法和onMeasure方法相似,需要由子类去具体实现。
我们看看DecorView的onLayout方法,DecorView也是一个ViewGroup嘛。
protected void onLayout(boolean changed, int left, int top, int right, int bottom) { super.onLayout(changed, left, top, right, bottom); //代码省略 }
转到了父类(FrameLayout)的onLayout方法,我们继续跟进去
protected void onLayout(boolean changed, int left, int top, int right, int bottom) { layoutChildren(left, top, right, bottom, false /* no force left gravity */); }
又转到了layoutChildren方法去布局子元素。layoutChildren方法如下:
void layoutChildren(int left, int top, int right, int bottom, boolean forceLeftGravity) { final int count = getChildCount(); final int parentLeft = getPaddingLeftWithForeground(); final int parentRight = right - left - getPaddingRightWithForeground(); final int parentTop = getPaddingTopWithForeground(); final int parentBottom = bottom - top - getPaddingBottomWithForeground(); for (int i = 0; i < count; i++) { final View child = getChildAt(i); if (child.getVisibility() != GONE) { final LayoutParams lp = (LayoutParams) child.getLayoutParams(); final int width = child.getMeasuredWidth(); final int height = child.getMeasuredHeight(); int childLeft; int childTop; int gravity = lp.gravity; if (gravity == -1) { gravity = DEFAULT_CHILD_GRAVITY; } final int layoutDirection = getLayoutDirection(); final int absoluteGravity = Gravity.getAbsoluteGravity(gravity, layoutDirection); final int verticalGravity = gravity & Gravity.VERTICAL_GRAVITY_MASK; switch (absoluteGravity & Gravity.HORIZONTAL_GRAVITY_MASK) { case Gravity.CENTER_HORIZONTAL: childLeft = parentLeft + (parentRight - parentLeft - width) / 2 + lp.leftMargin - lp.rightMargin; break; case Gravity.RIGHT: if (!forceLeftGravity) { childLeft = parentRight - width - lp.rightMargin; break; } case Gravity.LEFT: default: childLeft = parentLeft + lp.leftMargin; } switch (verticalGravity) { case Gravity.TOP: childTop = parentTop + lp.topMargin; break; case Gravity.CENTER_VERTICAL: childTop = parentTop + (parentBottom - parentTop - height) / 2 + lp.topMargin - lp.bottomMargin; break; case Gravity.BOTTOM: childTop = parentBottom - height - lp.bottomMargin; break; default: childTop = parentTop + lp.topMargin; } child.layout(childLeft, childTop, childLeft + width, childTop + height); } } }
呐,总之就是会遍历出子元素,然后调用子元素的layout方法,然后在子元素的layout方法中又会调用setFrame方法来确定其在父容器中的位置。如此反复完成视图树的布局过程。
以上就是layout过程。
draw过程
在performDraw方法中,会调用draw方法的重载,之后会转到draw(Canvas canvas)方法,如下:
public void draw(Canvas canvas) { final int privateFlags = mPrivateFlags; final boolean dirtyOpaque = (privateFlags & PFLAG_DIRTY_MASK) == PFLAG_DIRTY_OPAQUE && (mAttachInfo == null || !mAttachInfo.mIgnoreDirtyState); mPrivateFlags = (privateFlags & ~PFLAG_DIRTY_MASK) | PFLAG_DRAWN; /* * Draw traversal performs several drawing steps which must be executed * in the appropriate order: * * 1. Draw the background * 2. If necessary, save the canvas' layers to prepare for fading * 3. Draw view's content * 4. Draw children * 5. If necessary, draw the fading edges and restore layers * 6. Draw decorations (scrollbars for instance) */ // Step 1, draw the background, if needed int saveCount; if (!dirtyOpaque) { drawBackground(canvas); } // skip step 2 & 5 if possible (common case) final int viewFlags = mViewFlags; boolean horizontalEdges = (viewFlags & FADING_EDGE_HORIZONTAL) != 0; boolean verticalEdges = (viewFlags & FADING_EDGE_VERTICAL) != 0; if (!verticalEdges && !horizontalEdges) { // Step 3, draw the content if (!dirtyOpaque) onDraw(canvas); // Step 4, draw the children dispatchDraw(canvas); // Overlay is part of the content and draws beneath Foreground if (mOverlay != null && !mOverlay.isEmpty()) { mOverlay.getOverlayView().dispatchDraw(canvas); } // Step 6, draw decorations (foreground, scrollbars) onDrawForeground(canvas); // we're done... return; } //代码省略 }
我们关注1,3,4,6步。
第一步: drawBackground(canvas) 绘制背景
第三步: onDraw(canvas) 绘制自己,具体如何绘制?需要由子类具体实现,可以阅读下TextView的onDraw方法源码
第四步: dispatchDraw(canvas) 绘制子元素,既然是绘制子元素的话,那么ViewGroup实现了这个方法,来探探ViewGroup的dispatchDraw方法,如下:
protected void dispatchDraw(Canvas canvas) { //代码省略 for (int i = 0; i < childrenCount; i++) { while (transientIndex >= 0 && mTransientIndices.get(transientIndex) == i) { final View transientChild = mTransientViews.get(transientIndex); if ((transientChild.mViewFlags & VISIBILITY_MASK) == VISIBLE || transientChild.getAnimation() != null) { more |= drawChild(canvas, transientChild, drawingTime); } transientIndex++; if (transientIndex >= transientCount) { transientIndex = -1; } } final int childIndex = getAndVerifyPreorderedIndex(childrenCount, i, customOrder); final View child = getAndVerifyPreorderedView(preorderedList, children, childIndex); if ((child.mViewFlags & VISIBILITY_MASK) == VISIBLE || child.getAnimation() != null) { more |= drawChild(canvas, child, drawingTime); } } //代码省略 }
在dispatchDraw方法中会遍历子元素,转到drawChild方法,在drawChild方法中又会调用View的draw方法来完成子元素的绘制过程,如此循环完成整个视图树的绘制。
第六步:onDrawForeground(canvas) 绘制前景,ScroolBars。
以上就是draw过程。
至此,View的绘制流程已经全部分析完了。
发布评论
热门评论区: